u Zhang, Y., Xiong, R., He, H., Qu, X. and Pecht, M., Aging
characteristics-based health diagnosis and remaining useful life prognostics
for lithium-ion batteries, ETransportation,1, pp. 100004_1-10, 2019.
DOI: https://doi.org/10.1016/j.etran.2019.100004
u Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X. and Wei, M., A review
on deep learning applications in prognostics and health management, IEEE access,
7, pp. 162415-162438, 2019.
DOI: https://doi.org/10.1109/access.2019.2950985
u Hou, G.Q. and Lee, C.M., Estimation of the defect width on the
outer race of a rolling element bearing under time-varying speed conditions,
Shock and vibration, 2019, pp. 8479395_1-11, 2019.
DOI: https://doi.org/10.1155/2019/8479395
u Ham, S., Han, S.Y., Kim, S., Park, H.J., Park, K.J. and Choi,
J.H., A comparative study of fault diagnosis for train door system:
Traditional versus deep learning approaches, Sensors, 19(23), pp. 5160_1-15,
2019.
DOI: https://doi.org/10.3390/s19235160
u Venugopal, P., State-of-health estimation of li-ion batteries in
electric vehicle using IndRNN under variable load condition, Energies,
12(22), pp. 4338_1-29, 2019.
DOI: https://doi.org/10.3390/en12224338
u Daher, A., Hoblos, G., Khalil, M. and Chetouani, Y., New prognosis
approach for preventive and predictive maintenance—Application to a
distillation column, Chemical engineering research and design, 153,
pp.162-174, 2020.
DOI: https://doi.org/10.1016/j.cherd.2019.10.029
u Li, X., Yang, X., Yang, Y., Bennett, I. and Mba, D., An
intelligent diagnostic and prognostic framework for large-scale rotating
machinery in the presence of scarce failure data, Structural health monitoring,
published online, pp. 1475921719884019, 2019.
DOI: https://doi.org/10.1177/1475921719884019
u Aivaliotis, P., Georgoulias, K. and Chryssolouris, G., The use of
digital twin for predictive maintenance in manufacturing, International
journal of computer integrated manufacturing, published online, pp.1067-1080,
2019.
DOI: https://doi.org/10.1080/0951192X.2019.1686173
u Goyal, D., Choudhary, A., Pabla, B.S. and Dhami, S.S., Support
vector machines based non-contact fault diagnosis system for bearings,
Journal of intelligent manufacturing, published online, pp.1-15, 2019.
DOI: https://doi.org/10.1007/s10845-019-01511-x
u She, C., Wang, Z., Sun, F. and Zhang, L., Battery aging assessment
for real-world electric buses based on incremental capacity analysis and
radial basis function neural network, IEEE transactions on industrial informatics,
early access article, 2019.
DOI: https://doi.org/10.1109/TII.2019.2951843
|