À̸§ KSPHM À̸ÞÀÏ phm@phm.or.kr
ÀÛ¼ºÀÏ 2020-03-10 Á¶È¸¼ö 3211
ÆÄÀÏ÷ºÎ
Á¦¸ñ
[PHM News Letter vol.7] PHM °ü·Ã ±¹³»¿Ü ÃֽŠ´ëÇ¥ ³í¹®

 


 

Newsletter 7È£ ±¹³»¿Ü ÃֽŠ´ëÇ¥ ³í¹®

 

u Kim, S., Kim, N.H. and Choi, J.H., Prediction of remaining useful life by data augmentation technique based on dynamic time warping. Mechanical Systems and Signal Processing, 136, p.106486, 2020.

DOI: https://doi.org/10.1016/j.ymssp.2019.106486

 

u Pan, Y., Hong, R., Chen, J. and Wu, W., A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renewable Energy, 152, pp.138-154, 2020.

DOI: https://doi.org/10.1016/j.renene.2020.01.042

 

u Atamuradov, V., Medjaher, K., Camci, F., Zerhouni, N., Dersin, P. and Lamoureux, B., Machine Health Indicator Construction Framework for Failure Diagnostics and Prognostics. Journal of Signal Processing Systems, pp.1-19, 2020.

DOI: https://doi.org/10.1007/s11265-019-01491-4

 

u Verstraete, D., Droguett, E. and Modarres, M., A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors, 20(1), p.176, 2020.

DOI: https://doi.org/10.3390/s20010176

 

u Li, R., Verhagen, W.J. and Curran, R., A systematic methodology for Prognostic and Health Management system architecture definition. Reliability Engineering & System Safety, 193, p.106598, 2020.

DOI: https://doi.org/10.1016/j.ress.2019.106598

 

u da Costa, P.R.D.O., Akçay, A., Zhang, Y. and Kaymak, U., Remaining useful lifetime prediction via deep domain adaptation. Reliability Engineering & System Safety, 195, p.106682, 2020.

DOI: https://doi.org/10.1016/j.ress.2019.106682

 

u Wang, J., Liang, Y., Zheng, Y., Gao, R.X. and Zhang, F., An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Renewable Energy, 145, pp.642-650, 2020.

DOI: https://doi.org/10.1016/j.renene.2019.06.103

 

u Peeters, C., Antoni, J. and Helsen, J., Blind filters based on envelope spectrum sparsity indicators for bearing and gear vibration-based condition monitoring. Mechanical Systems and Signal Processing, 138, p.106556, 2020.

DOI: https://doi.org/10.1016/j.ymssp.2019.106556

 

u Kane, P.V. and Andhare, A.B., Critical evaluation and comparison of psychoacoustics, acoustics and vibration features for gear fault correlation and classification. Measurement, p.107495, 2020.

DOI: https://doi.org/10.1016/j.measurement.2020.107495

 

u Duan, C., Makis, V. and Deng, C., A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes. Reliability Engineering & System Safety, 193, p.106676, 2020.

DOI: https://doi.org/10.1016/j.ress.2019.106676

 

 


ÀÌÀü±Û [PHM News Letter vol.7] ȸ¿ø»ç ¼Ò°³ - ¿øÇÁ·¹µñÆ®
´ÙÀ½±Û [PHM News Letter vol.7] ±¹Á¦Çмú´ëȸ Âü°ü±â - SDEMPED 2019