À̸§ KSPHM À̸ÞÀÏ phm@phm.or.kr
ÀÛ¼ºÀÏ 2020-06-12 Á¶È¸¼ö 11864
ÆÄÀÏ÷ºÎ
Á¦¸ñ
[PHM Newsletter vol.8] PHM °ü·Ã ±¹³»¿Ü ÃֽŠ´ëÇ¥ ³í¹®

 

Newsletter 8È£ ±¹³»¿Ü ÃֽŠ´ëÇ¥ ³í¹®

 

¡ß N. Omri, Z. Al Masry, N. Mairot, S. Giampiccolo, N. Zerhouni, Industrial data management strategy towards an SME-oriented PHM, Journal of Manufacturing Systems, Volume 56, 2020

DOI: https://doi.org/10.1016/j.jmsy.2020.04.002

(http://www.sciencedirect.com/science/article/pii/S0278612520300467)

 

¡ß Rui Li, Wim J.C. Verhagen, Richard Curran, Toward a methodology of requirements definition for prognostics and health management system to support aircraft predictive maintenance, Aerospace Science and Technology, Volume 102, 2020.

DOI: https://doi.org/10.1016/j.ast.2020.105877

(http://www.sciencedirect.com/science/article/pii/S1270963820305599)

 

¡ß Rui Li, Wim J.C. Verhagen, Richard Curran, A systematic methodology for Prognostic and Health Management system architecture definition, Reliability Engineering & System Safety, Volume 193, 2020

DOI: https://doi.org/10.1016/j.ress.2019.106598

(http://www.sciencedirect.com/science/article/pii/S0951832018315084)

 

¡ß Behnoush Rezaeianjouybari, Yi Shang, Deep learning for prognostics and health management: State of the art, challenges, and opportunities, Measurement, Volume 163, 2020

DOI: https://doi.org/10.1016/j.measurement.2020.107929

(http://www.sciencedirect.com/science/article/pii/S026322412030467X)

 

¡ß Jae-Cheon Jung, Adebena Oluwasegun, The application of machine learning for the Prognostics and Health Management of control element drive system, Nuclear Engineering and Technology, 2020

DOI: https://doi.org/10.1016/j.net.2020.03.028

(http://www.sciencedirect.com/science/article/pii/S1738573319308654)

 

¡ß Yubin Pan, Rongjing Hong, Jie Chen, Weiwei Wu, A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox, Renewable Energy, Volume 152, 2020

DOI: https://doi.org/10.1016/j.renene.2020.01.042

(http://www.sciencedirect.com/science/article/pii/S0960148120300471)

 

¡ß Olga Fink, Qin Wang, Markus Svensén, Pierre Dersin, Wan-Jui Lee, Melanie Ducoffe, Potential, challenges and future directions for deep learning in prognostics and health management applications, Engineering Applications of Artificial Intelligence, Volume 92, 2020

DOI: https://doi.org/10.1016/j.engappai.2020.103678

(http://www.sciencedirect.com/science/article/pii/S0952197620301184)

 

¡ß Zong Meng, Jing Li, Na Yin, Zuozhou Pan, Remaining useful life prediction of rolling bearing using fractal theory, Measurement, Volume 156, 2020.

DOI: https://doi.org/10.1016/j.measurement.2020.107572

(http://www.sciencedirect.com/science/article/pii/S0263224120301093)

 

¡ß William Baker, Steven Nixon, Jeffrey Banks, Karl Reichard, Kaitlynn Castelle, Degrader Analysis for Diagnostic and Predictive Capabilities: A Demonstration of Progress in DoD CBM+ Initiatives, Procedia Computer Science, Volume 168, 2020

DOI: https://doi.org/10.1016/j.procs.2020.02.253

(http://www.sciencedirect.com/science/article/pii/S1877050920303926)

 

¡ß Wihan Booyse, Daniel N. Wilke, Stephan Heyns, Deep digital twins for detection, diagnostics and prognostics, Mechanical Systems and Signal Processing, Volume 140, 2020.

DOI: https://doi.org/10.1016/j.ymssp.2019.106612

(http://www.sciencedirect.com/science/article/pii/S0888327019308337)

 

¡ß Sheng Xiang, Yi Qin, Caichao Zhu, Yangyang Wang, Haizhou Chen, Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction, Engineering Applications of Artificial Intelligence, Volume 91, 2020.

DOI: https://doi.org/10.1016/j.engappai.2020.103587

(http://www.sciencedirect.com/science/article/pii/S0952197620300634)

 

 

ÀÌÀü±Û [PHM News Letter vol.8] ±¹Á¦Çмú´ëȸ Âü°ü±â - ERMR 2019
´ÙÀ½±Û [PHM News Letter vol.8] ȸ¿ø»ç µ¿Á¤-(ÁÖ)ÇǵµÅØ